
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1539
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

FPGA Implementation of Smart Multi-Protocol
Translator

Raju Patil, Pandit Nad, Smt.Sujatha Hiremath

Abstract --- The protocols are very important to achieve the interoperability between two devices. The commonly used protocols are
SPI,GPIO,UART,I2C etc .These compact protocol converters create seamless, low-power, low-voltage connections for the most widely
used interfaces (I2C, GPIO, IrDA, SPI, UART), making it easy to add multiple devices to any application with UART or SPI bus interfaces.
The result is increased design flexibility with reduced complexity, lower software overhead, and faster time-to-market.In this paper we
focus on the implementation of a new smart bus translator or protocol converter to convert standard protocol of one device to the protocol
of other device [SPI, UART, and GPIO]. It reduces the complexity of circuit design, if we are having different protocol based devices it is
very difficult to build separate platform and software/firmware for each device, in such case it is very useful. This design also reduces the
firmware development time for different protocol based devices. For implementation was carried out using Xilinx ISE 12.3 Platform
(software) and Spartan 3E FPGA Platform (Hardware).

Keywords--- SPI, UART, GPIO, Multi-protocol translator and Smart Bus Translator.

—————————— ——————————

1 INTRODUCTION
 In most of the applications, the physical systems
require a real-time operation to interface high speed
constraints. A Bus translator or Protocol Converter is
a device used to convert standard or proprietary
protocol of one device to the protocol suitable for the
other device or tools to achieve the interoperability.
The design intent is to develop a bridge that provides
interoperability between different serial protocols
based devices. A smart and configurable protocol
bridge or bus translator serves as bus interpreter for
peripheral interfaces with different protocols. There
are in numerous devices out in the digital world
serving various purposes with limited options for
connectivity. For instance there are thousands of
sensors, transducers, memory devices, controllers
and other chips which provide interface via just one
or two serial protocols. It is extremely difficult to
develop common firmware/software for various such
devices if they all operate similar as required but
communicate with different protocols.

• Raju patil , currently pursuing masters degree program in Vlsi
Design & Embedded system in R V College of Engineering
Bangalore,Karnataka, India, E-mail: rnbec021@gmail.com.

• Pandit Nad, currently pursuing masters degree program in Vlsi
Design & Embedded system in R V College of Engineering
Bangalore,Karnataka, India, E-mail:pandit.nad@gmail.com.

• Smt.Sujatha Hiremath ,Asst.professor,R V College of Engineering
Bangalore,Karnataka,India , E-mail: sujathah@rvce.edu.in.

Testing of such devices will result in an overhead
work of development of circuitry, and
firmware/software for each of such devices with
different protocols. There is a necessity for a bridge
that eliminates this problem. This solution can
eliminate development time of firmware for similar
devices with different protocols.

For example various families of GPS chips come with
UART interface, some with I2C interface, and some
with GPIO interface. It is a overhead to develop three
different platforms and firmware/software for each of
interfaces. A protocol bridge would come very
helpful in such applications. Also a bridge helps in
development of application despite of interface type
and also provides the luxury of changing to a
different device with different interface without
having to make any changes to existing software and
configurations.

F. Leens [6] has designed FPGA implementation of
SPI and I2C on Spartan 3e.

A.K. Oudjida [3] has also designed FPGA
implementation of SPI and I2C and done
comparative study of both these protocols. All other
reference papers are referred for the design of SPI,
UART and GPIO protocols.

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Proprietary_protocol
http://en.wikipedia.org/wiki/Proprietary_protocol
mailto:rnbec021@gmail.com
mailto:sujathah@rvce.edu.in

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1540
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

In all these papers discussed, the bus protocol
translator translates only one protocol to another.
And also they do not account for multiple protocol
translation. This lacuna has been addressed in this
paper by designing a multi-protocol translator, which
translates protocols between SPI, UART, and GPIO.

The paper is organized as follows: section 2 describes
the proposed design with three micro-architectures
namely SPI, UART & GPIO; in section 3 syntheses
and output results were plotted; section 4 discusses
the conclusion and future work.

2 PROPOSED DESIGN

Design and implementation of Bus translator:
The Bridge has been designed with UART, SPI and
GPIO interfaces. The design has two interfaces of
each protocol type serving as a universal bridge
between these protocols. Any one of these protocols
could be converted to other and vice versa. We have
to configure the communication path which we want
by using config.select pin. The design will support
operating configurations shown in table 1 and the
proposed design shown in the figure 1.

Figure1. Proposed Design of Smart Bus Translator

Figure 2.FSM of proposed design.

Table 1. Configuration of SBT

Configuration Config
.select

Additional
Features

UART– UART
0000

Interrupt/req
based data
acquisition.
Slave operation.

UART – SPI
0001

Delay insertion,
data
manipulation,
extended slave
selection.

UART– GPIO 0010 Slave operation.
SPI – UART 0011 Delay insertion,

different baud
rates on each
interface.

SPI – SPI 0100 Slave selection,
Master
operation.

SPI – GPIO 0101 Interrupt based
data acquisition.

GPIO – UART 0110 Interrupt based
data acquisition.

GPIO – SPI 0111 Interrupt based
master
operation.

GPIO– GPIO 1000 Data
manipulation,
delay insertion.

Algorithm of proposed design [figure 2] shows the
step wise execution of Protocol translator. After reset
the device initialize the configuration Uart, and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1541
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

display the boot message on the screen, after this it
initialize all protocols in the proposed design, based
on the configuration select, it provides the operation.

2.1 Architecture of SPI (Serial Peripheral Interface)

Figure 3. Architectural block diagram

Serial to Peripheral Interface (SPI) is a
hardware/firmware communications protocol
developed by Motorola and later adopted by others
in the industry. Microware of National
Semiconductor is same as SPI. Sometimes SPI is also
called a "four wire" serial bus. 4-wire serial
communications interface used by many
microprocessor / microcontroller peripheral chips
that enable the controllers and peripheral devices to
communicate each other, it shown in the fig 3. The
SPI bus, which operates at full duplex (means, signals
carrying data can go in both directions
simultaneously), is a synchronous type data link
setup with a Master / Slave interface. Due to this
high-speed aspect, the bus lines cannot be too long,
because their reactance increases too much, and the
Bus becomes unusable. However, it’s possible to use
the SPI Bus outside the PCB at low speeds, but this is
not quite practical. 4-wire serial communications
interface used by many microprocessor /
microcontroller peripheral chips that enable the
controllers and peripheral devices to communicate
each other. The SPI bus, which operates at full duplex
(means, signals carrying data can go in both
directions simultaneously), is a synchronous type
data link setup with a Master / Slave interface and
can support up to 1 mega baud or 10Mbps of speed.

Micro architecture design of SPI:

(a)

(b)

Figure 4. SPI a) Master and b) Slave

Due to this high-speed aspect, the bus lines cannot be
too long, because their reactance increases too much,
and the Bus becomes unusable. However, it’s
possible to use the SPI Bus outside the PCB at low
speeds, but this is not quite practical.

Data and control lines of the SPI and the basic
connection:

An SPI protocol specifies 4 signal wires.

1. Master Out Slave In (MOSI) - MOSI signal is
generated by Master, recipient is the Slave.

2. Master In Slave Out (MISO) - Slaves generate
MISO signals and recipient is the Master.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1542
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3. Serial Clock (SCLK or SCK) - SCLK signal is
generated by the Master to synchronize data
transfers between the master and the slave.

4. Slave Select (SS) from master to Chip Select (CS) of
slave - SS signal is generated by Master to select
individual slave/peripheral devices. The SS/CS is an
active low signal.

In single-master protocol, usually one SPI device acts
as the SPI Master and controls the data flow by
generating the clock signal (SCLK) and activating the
slave it wants to communicate with slave-select
signal (SS), then receives and or transmits data via
the two data lines it is shown in fig 4. A master,
usually the host micro controller, always provides
clock signal to all devices on a bus whether it is
selected or not.

2.2 Architecture of UART :(Universal
Asynchronous Receiver & Transmitter)

A universal asynchronous receiver/transmitter,
abbreviated as UART, is a type of "asynchronous
receiver/transmitter", a piece of computer
hardware that translates data between
parallel and serial forms. UARTS are commonly used
in conjunction with communication standards such
as RS-232, RS-422 OR RS-485.

Micro architecture design (UART):

Figure 5. UART design

The universal designation indicates that the data
format and transmission speeds are configurable and
that the actual electric signaling levels and methods

(such as differential signaling etc.) Typically are
handled by a special driver circuit external to the
UART.

 A UART is usually an individual (or part of
an) integrated circuit used for serial
communications over a computer or peripheral
device serial port [fig 5]. UARTS are now commonly
included in microcontrollers. A dual UART,
or DUART, combines two UARTS into a single chip.
Many modern ics now come with a UART that can
also communicate synchronously; these devices are
called USARTS. The simple Universal Asynchronous
Receiver Transmitter provides a reduced silicon
footprint serial interface for an embedded system.
This is ideal for a debug interface or simple console
interface where the baud rate does not need to be
changed by the application. The configurable FIFO
depth ensures that the UART can be dimensioned for
the application, and the software overhead of serial
communication can be optimized without risking
losing characters. The independent transmit and
receive interrupts simplify the software architecture.

2.3 Architecture of GPIO (General Purpose Input &
Output):

Micro architecture Design (GPIO):

 (a)

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Parallel_communication
http://en.wikipedia.org/wiki/Serial_communication
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/RS-422
http://en.wikipedia.org/wiki/RS-485
http://en.wikipedia.org/wiki/Differential_signaling
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Serial_port

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1543
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

(b)

Figure 6. GPIO a) Input and b) Output

General Purpose Input/output (GPIO) is a generic pin
on a chip whose behavior (including whether it is an
input or output pin) can be controlled (programmed)
by the user at run time is shown in fig 6.GPIO pins
have no special purpose defined, and go unused by
default. The idea is that sometimes the system
integrator building a full system that uses the chip
might find it useful to have a handful of additional
digital control lines, and having these available from
the chip can save the hassle of having to arrange
additional circuitry to provide them. GPIO
peripherals vary quite widely. In some cases, they are
very simple, a group of pins that can be switched as a
group to either input or output. In others, each pin
can be set up flexibly to accept or source different
logic voltages, with configurable drive strengths
and pull ups/downs. The input and output voltages
are typically, though not universally limited to the
supply voltage of the device with the GPIOs on, and
may be damaged by greater voltages.

3 SYNTHESIS RESULTS
Fig 5 to 14 shows the output waveform and RTL
view of the each protocol used in the proposed
design.

Fig 5.RTL view of GPIO input block

Fig 6. Output of GPIO input block

Fig 7. RTL view of GPIO output block

Fig 8. Output of GPIO output block

Fig 9. RTL view of Master block

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/System_integrator
http://en.wikipedia.org/wiki/System_integrator
http://en.wikipedia.org/wiki/Pull-up_resistor

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1544
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig 10. Output waveform of SPI Master block

Fig 11. RTL view of slave block

Fig 12. Output waveform of slave block

Fig 13. RTL view of UART block

Fig 14. Output waveform of UART block

Fig 15.Output waveform of UART-UART
configuration

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1545
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig 16.Output waveform of UART-SPI configuration

Fig 17.Output waveform of UART-GPIO
configuration

Fig 18.Output wave form of SPI-UART configuration

Fig 19.Output wave form of SPI-SPI configuration

Fig 20.Output waveform of SPI-GPIO configuration

Fig 21.Output waveform of GPIO-UART
configuration

Fig 22.Output waveform of GPIO-SPI configuration

Fig 23.Output wave form of GPIO-GPIO
configuration

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1546
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4 CONCLUSION & FUTURE WORK
 The paper intent was to design a new bus protocol
translator. This translator can translate data between
any of (UART, SPI, GPIO) protocols. The proposed
design was carried out in verilog HDL .The design
has been successfully simulated and functionally
verified in ISE simulator. The hardware
implementation has been done on Spartan 3E FPGA.
The proposed design can be operated at different
frequencies (up to 32MHz).This concept can be
extended to include many more protocols that exist
and also for new protocols to come.

REFERENCES

1. Free scale Semiconductor, (2008, October 14). Free

scale SPI Block Guide V04.01 Jul.14

2. F. Leens, "An Introduction to SPI Protocols ,"IEEE

Instrumentation & Measurement

Magazine, pp. 8-13, February 2009.

3. A.K. Oudjidaetai, FPGA Implementation of I2C &

SPI protocols. A Comparative Study". Proceedings

of the 16th edition IEEE International Conference on

Electronics Circuits and System ICECS, pp.507 -510,

Dec 13-16 2009.

4. www.microsemi.com/soc/download/rsc/f=UART_to

_SPI_DF.

5. J.M. Irazabel& S. Blozis, Philips Semiconductors,

“I2C-Manual,”Application Note, ref. AN10216-0,

March 24, 2003.

6. F.Leens, “An Introduction to I2C and SPI

Protocols,” IEEE Instrumentation & Measurement

Magazine, pp. 8-13, February 2009.

7. Wolfson Microelectronics. (2004) “WM8731 Data

sheet”. PDF Document.

8. Comer 2000, Sect. 11.2 - The Need For Multiple

Protocols, p. 177, "They (protocols) are to

communication what programming languages are to

computation".

9. Ben-Ari 1982, chapter 2 - The concurrent

programming abstraction, p. 18-19, states the same.

10. ALSA Development List, Linux, Linux TV GPIO

Pins Info for Gpio protocol.

11. Design and simulation of UART serial
communication module based on VHDL - Fang Yi-
Yuan, Chen Xue, IEEE Explore, may 2011.

12. A.K Oudjida et ai, Master-Slave wrapper
communication protocol: A case-study, Proceedings
of the 1st IEEE International Computer Systems and
Information Technology Conference ICSIT'05, PP
461-467, 19-21 July 2006.

IJSER

http://www.ijser.org/
http://linuxtv.org/wiki/index.php/GPIO_pins
http://linuxtv.org/wiki/index.php/GPIO_pins

	1 INTRODUCTION
	2 PROPOSED DESIGN
	Design and implementation of Bus translator:
	3 SYNTHESIS RESULTS
	4 CONCLUSION & FUTURE WORK
	 The paper intent was to design a new bus protocol translator. This translator can translate data between any of (UART, SPI, GPIO) protocols. The proposed design was carried out in verilog HDL .The design has been successfully simulated and functionally verified in ISE simulator. The hardware implementation has been done on Spartan 3E FPGA. The proposed design can be operated at different frequencies (up to 32MHz).This concept can be extended to include many more protocols that exist and also for new protocols to come.

